


| Operating Data                         |                                  | RVM/UM                                                                                        |                                        |  |  |  |
|----------------------------------------|----------------------------------|-----------------------------------------------------------------------------------------------|----------------------------------------|--|--|--|
| Pressure: brass                        |                                  | PN 250 bar                                                                                    |                                        |  |  |  |
| Pressure: stainl. steel                |                                  | PN 300 bar                                                                                    |                                        |  |  |  |
| Pressure drop.:                        |                                  | siehe Diagramm unten                                                                          |                                        |  |  |  |
| Temperature max.:                      |                                  | 120°C (optional 160°C)                                                                        |                                        |  |  |  |
| Accuracy:                              |                                  | switch point >3l/min ±5% of switch value<br>switch point <3l/min ±0,1l/min of switch value    |                                        |  |  |  |
| Electrical Data:                       |                                  | SPST N.O.                                                                                     | SPDT                                   |  |  |  |
| IP65 (plug connection DIN43650 Form A) |                                  | max. 250V • 3A •100 VA                                                                        | max. 250V • 1,5A • 50VA <sup>(1)</sup> |  |  |  |
| IP67 (with 1m sealed in cable)         |                                  | max. 250V • 5A • 100 VA                                                                       |                                        |  |  |  |
| €x Atex II 2G EE<br>(2m sealed in      | Ex m II T6 max. 80°C cable IP67) | max. 250V • 2A • 60VA                                                                         | max. 250V • 1A • 30VA                  |  |  |  |
| Output signal:                         |                                  | The switch contact is switching when the flow falls short of or exceeds the adjusted<br>flow. |                                        |  |  |  |
| Power supply:                          |                                  | not necessary (reed contacts)                                                                 |                                        |  |  |  |
| Cable diameter for IP65:               |                                  | 6 - 8 mm                                                                                      |                                        |  |  |  |
| Grade of pollution:                    |                                  | 2 (EN 61058-1)                                                                                |                                        |  |  |  |
| Other plug types                       | or cable lengths on requ         | uest                                                                                          |                                        |  |  |  |
| Materials                              |                                  | brass                                                                                         | stainl. st.                            |  |  |  |
| Wetted parts:                          |                                  | brass                                                                                         | 1.4571 (316 ti)                        |  |  |  |
| Spring                                 | (wetted parts)                   | 1.4571 (316 ti)                                                                               |                                        |  |  |  |
| Magnets                                | (wetted parts)                   | hard-ferrite                                                                                  |                                        |  |  |  |
| Housing (wetted parts)                 |                                  | brass nickel-plated                                                                           | 1.4571 (316 ti)                        |  |  |  |

-4-

#### 1) Minimum load 3VA



#### Dimensions and weights

| Тур    | Overall dimensions mm |    |    |    |    |    |     |             |
|--------|-----------------------|----|----|----|----|----|-----|-------------|
|        | SW                    | D  | В  | G  | DN | Т  | L   | approx. [g] |
| RVM/UM | 41                    | 47 | 72 | 1″ | 25 | 20 | 130 | 1000        |

Meister Strömungstechnik GmbH Im Gewerbegebiet 2 DE-63831 Wiesen Tel. +49 6096 9720-0 Fax +49 6096 9720-30

info@meister-flow.com http://www.meister-flow.com All rights reserved

# Operating instruction RVM/UM

The flowmonitors type RVM/UM prove themself through reliability and simple handling. To use the advantages of the instrument to the full extent, please take notice of the

Every person, in charge of commissioning and operating this instrument, must have read and

understand this operating instruction and

The instructions contained in the operating instructions

must be followed to ensure a safe operation of the

instrument. Further, the additional Legal- and safetyregulations for the individual application must be

observed. Accordingly this applies for the use of

The instruments, type RVM/UM, serve as monitors for

continuous flow of liquids. Any other use counts as

nondirected. If not indicated otherwise, the scaling of

the instruments refer to water. Special applications, where intermittent loads (e.a. cyclic operation) could

occur, should be discussed and checked with our

The instruments, type RVM/UM, must not be used as single source to avoid dangerous situations on machi-

Machinery and plants must be constructed in that way,

that faulty conditions do not lead the operators into dan-

The instruments, type RVM/UM, must only be installed

by gualified personnel, which is capable of using these

instruments in a professional manner. Qualified per-

sonnel are such persons, which are familier with the

erection, installation, commissioning and operation of

in these instruments and which hold a corresponding

Content

1 Preface ...... 2 Safety hints 3 Principle of operation

4 Installation

Maintenance

9 Specifications

1 Preface

followina:

8 Fault finding hints

5 Electrical connection

6 Switch point adjustment

specially the safety hints!

2 Safetv hints

1 General hints

accessories as well.

technical Staff.

nerv and in plants.

gerous situations.

2.3 Qualified personnel

g qualification for this function.

RVM\_UM 0002

m

2.2 Application as directed

-1-

..... 3

3

# 3 Principle of operation

The instruments type RVM/UM operate on the principle of the float type flow indicator. Through the flowing medium a float is set in motion, whose integrated magnets create a magnetic field. The position of the float is detected with the switch contact. The float is reseted to the starting point by means of a spring, which allows the installation in any position in a system. The instruments are adjusted for the installation with flow from bottom to top. The weight of the float influences the measuring result, therefore a different mounting position will show discrepancies to the actual flow

#### 4 Installation

#### 4.1 Process connection

Caution! To avoid the damage of the flowmonitor or the installation the following requirements must be fulfilled under any circumstances:

- suitable process connection has to be provided
- connection size to be checked
- thread depth to be checked
- suitable sealing material to be used (liquid sealing material will damage the flowmonitor if it gets inside)
- professional sealing

#### 4.2 Enviroment conditions

- The flowmonitor must not be used as a supporting part in a pipe construction.
- The medium must not contain any solid particles. Magnetic particles will accumulate at the magnetic float and effect the function.
- Before employment of anti-freeze and anti-corrosive check compatibility.

Warning! The following requirements must be adhered to, otherwise the function of the flowmonitor will be affected or the measuring results will be falsified:

- External magnetic fields will influence the switch contact. Keep sufficient distance to magnetic fields (e.a. Electricmotors).
- Piping, process connections or supports made from ferromagnetic material influence the magnetic field of the flowmonitor. Keep a space of 100mm to those materials (e.a. steel).
- The accuracy is influenced by cross-section changes, branches or elbows in the piping. Provide a straightening section of 10x DN upstream and 5x DN downstream of the instrument. Never reduce the pipe diameter direct ahead of the instrument!
- With liquids ensure through suitable steps the deareation of the instrument.

# Operating instruction RVM/UM

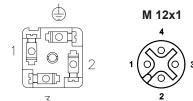
# 5 Electrical connection

The switch contacts are potential free and do not need any supply.

Attention! Switch contact and Instrument is a matched pair. In case of a defective switch contact the complete unit must be returned to the factory for readjustment.

Switch position under No flow condition:

# Connection: normally open


DIN 43650 M 12x1

#### Connection: change over



#### 5.1 Standard switch contact

Pin-allocation of the supplied socket (DIN 43650 Form A). The Ground-pin is not used.



#### Important instruction:

When using the socket DIN 43650, the ingress protection IP65 is only warranted in connection with a suitable cablediameter.

For infos on this subject please refer to page 4.

#### 5.2 Switch contact with cable

The individual cores of the cable are marked according to the above connection diagram.

#### 5.3 Special design

On request special designed switch contacts (socket, ready-made cable) can be supplied.

## 5.4 EEx-proof switch contacts

Attention!

For the connection of EEx-proof switch units special instructions apply, which must be followed! Pay attention to the hints in the separate operating instruction for EEx-proof switch contacts!

# **5.5 Contact protection arrangement** Attention!

The following requirements must be adhered to under any circumstances, otherwise the switch contact will be destroyed!

The reed-contacts employed in the switch contacts are, due to their construction, very fragile against over load. Non of the values voltage, current and wattage must be exceeded (Not even for a fractional moment).

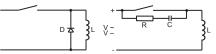
## The danger of overloads exist by means of:

meister

strömungstechnik

inductive loads
capacitive loads
resistive loads

# Inductive load


-2-

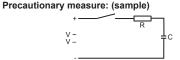
- This kind of load will be caused by:
- contactors, relais
   solenoid valves
- electricmotors

#### Danger:

Voltage peaks during switch off (up to 10-times of the nominal voltage)

#### Precautionary measure: (sample)




## Capacitive load

This kind of load will be caused by: -extrem long leads -capacitive consumption

#### Danger:

High current peaks during switch on of the switch contact (exceeding the nominal current)

#### **3** • • • • • • •



Limiting the current by means of a resistor

#### **Resistive load**

This kind of load will be caused by: - incandescent bulbs - Motor start up

#### Danger:

High current peaks during switch on of the switch contact, because the filament has low resistance at low temperatures.

#### Precautionary measure: (sample)



Limiting the current by means of a resistor or heating of the filament

# Operating instruction RVM/UM

#### **Connection to SPS**

For the connection to high resistance devices (like SPS) a protection circuit is not necessary.

#### 6 Switchpoint adjustment

- The switch point is factory adjusted and fixed according to customer requirement.

#### Hints:

- The adjusted switch point corresponds to the switch-on-point (increasing flow) or to the switch-off-point (decreasing flow) of the switch contact as stated with the order.
- The actual switch position can be checked by means of an universal tester.
- The above description of the adjustment refers to the normally open contact.

## 7 Maintenance

Due to the few moving parts the instruments do not require much service.

A functional check and service on a regular base will not only increase the lifetime and reliability of the instrument, but of the entire plant.

#### The service intervals depend on

- the pollution of the media
   environmental conditions (e.a. vibrations)

During maintenance at least the following points should be checked:

- operation of the switch contact
- leakage test of the instrument
- free movement of the float

It is the obligation of the user to lay down appropriate service intervals depending on the application.

#### Hints:

- The free movement of the float and the operation of the switch contact can be checked by varying the flow and observing the switch contact status.
- In most cases a purification can be achieved by flushing the instrument with clean media. In obstinate cases (e.a. calcareous deposits) cleaning can be done with commercial purifier, as long as the purifier is not aggressive against the material of the instrument.

# -3-

# 8 Fault finding hints

The switch contact does not react:

The switch contact is permanent in break position

strömunastechnik 🗄

#### 1. No flow

check for medium flow

2. Incorrect reduced (pipe diameter to small) reduce according to section 4

# 3. Float got stuck (polluted)

Clean the instrument and ensure free movement of the float

## 4. Switch contact faulty

Return instrument for repair and calibration to manufacturer

#### The switch contact is permanent in made position

#### 1. Float got stuck (polluted)

Clean the instrument and ensure free movement of the float

## 2. Switch contact faulty

Return instrument for repair and calibration to manufacturer

Switch point does not match with actual flow

#### 1. Incorrect reduced

reduce according to section 4

#### 2. Instrument polluted

clean the instrument

#### 3. Instrument defect

Return instrument for repair and calibration to manufacturer